Becoming airborne without legs: the kinematics of take-off in a flying snake, Chrysopelea paradisi.
نویسنده
چکیده
Among terrestrial vertebrate gliders, take-off presents a unique problem to flying snakes (Chrysopelea). Without legs, snakes must use fundamentally different kinematics to begin their aerial trajectories. To determine the effectiveness of different modes of take-off in a gliding snake (C. paradisi), I videotaped multiple views of take-off from a horizontal branch and quantified the two- and three-dimensional coordinates of three points on the snake's body. Performance values derived from these coordinates were used to describe take-off in C. paradisi, compare modes of take-off, and make predictions about the ecological use of take-off in the wild. Four types of take-off were identified. In most observed take-offs, snakes used a vertically looped take-off (termed 'anchored J-loop' and 'sliding J-loop'), which represent the only true jumping in snakes. In an anchored J-loop take-off, the snake formed an anterior hanging loop and then jumped by holding the posterior body static on the branch and accelerating up and away from the branch. This was the most commonly used take-off mode. A sliding J-loop take-off was similar but occurred with the entire body in motion. Snakes using such take-offs lowered less of their body below the branch than in an anchored J-loop take-off, resulting in shorter preparation and vertical acceleration durations and producing a lower maximum vertical velocity. However, these differences did not produce significant differences after the snakes were fully airborne and had started their aerial trajectories. The non-looped take-offs (termed ;dive' and ;fall') were the least kinematically complex. Compared to the non-looped take-offs, looped take-offs allowed snakes to reach higher, range farther, and attain greater speeds. Futhermore, snakes that launched with looped take-offs traveled farther over the course of a full glide trajectory when starting from a 10 m high perch. Take-off in C. paradisi is qualitatively similar to that in other species of Chrysopelea and may represent a suite of behaviors that preceded the evolution of gliding flight in snakes.
منابع مشابه
Gliding flight in Chrysopelea: turning a snake into a wing.
Although many cylindrical animals swim through water, flying snakes of the genus Chrysopelea are the only limbless animals that glide through air. Despite a lack of limbs, these snakes can actively launch by jumping, maintain a stable glide path without obvious control surfaces, maneuver, and safely land without injury. Jumping takeoffs employ vertically looped kinematics that seem to be differ...
متن کاملEffects of size and behavior on aerial performance of two species of flying snakes (Chrysopelea).
Aerial locomotion in snakes (genus Chrysopelea) is kinematically distinct from any other type of gliding or powered flight, with prominent, high amplitude body undulations visually dominating the behavior. Because it is not known how flying snakes produce aerodynamic forces in flight, the factors that determine snake flight performance are not clear. In this study, the effects of size and behav...
متن کاملMidway News--Medicine on the Midway, Fall 2002
2 M E D I C I N E O N T H E M I D W A Y Tracking flying snakes Ophidiophobia, the fear of snakes, traditionally has been among the most common phobias — and that was back when all we knew snakes could do was slither, burrow, swim and climb. Just imagine if snakes could fly. In fact, some can. More precisely, they glide or parachute in the same fashion as a flying squirrel, frog, lizard or fish....
متن کاملAerodynamics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape contributes to gliding performance.
A prominent feature of gliding flight in snakes of the genus Chrysopelea is the unique cross-sectional shape of the body, which acts as the lifting surface in the absence of wings. When gliding, the flying snake Chrysopelea paradisi morphs its circular cross-section into a triangular shape by splaying its ribs and flattening its body in the dorsoventral axis, forming a geometry with fore-aft sy...
متن کاملA 3-D kinematic analysis of gliding in a flying snake, Chrysopelea paradisi.
Flying snake species (Chrysopelea) locomote through the air despite a lack of appendages or any obvious external morphological specialization for flight. Here photogrammetric techniques were used to investigate C. paradisi's aerial trajectory in three dimensions. Two videocameras arranged in stereo were used to record head, midpoint and vent landmarks on snakes that jumped from a horizontal bra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 209 Pt 17 شماره
صفحات -
تاریخ انتشار 2006